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It is shown that in the quantum-classical limit (QCL) the observables have 
different behavior patterns connected with the preservation or loss of  their role 
of significant variables and of  their stochasticity. This result rectifies the traditional 
belief of  a unique behavior pattern associated with the disappearance of  
"uncertainties." 

1. INTRODUCTION 

The quantum --> classical limit (QCL) is associated (Landau and 
Lifschitz, 1980; Messiah, 1969) with the condition h --> 0 for the Planck 
constant h. Corresponding to the QCL the observables (i.e., the variables 
characterizing the physical systems) are changed from a quantum to a classical 
form. It is largely agreed that in the mentioned forms the observables are 
endowed, respectively unendowed, with "uncertainties" (specific for their 
measurements). So one believes that in the QCL the observables have a 
unique behavior pattern (way) connected with the fact that their "uncertain- 
ties" become null when h --> 0. 

But by a minute reexamination of the issue one finds (Dumitru, 1977, 
1987, 1988, t991, 1993) that in fact the mentioned "uncertainties" are nothing 
but fluctuation parameters (FP) of observables regarded as stochastic (ran- 
dom) variables. Such FP are specific (Dumitru, 1977, 1987, 1988, 1991, 
1993) for observables in both quantum and classical (nonquantum) contexts. 

Taking into account the alluded findings, in this short paper we wish to 
show that the QCL is more complex than the condition h --> 0 and that in 
the respective limits the observables have different behavior patterns. 
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2. F L U C T U A T I O N  P A R A M E T E R S  BUT N O T  
"UNCERTAINTIES" 

In order to follow our program let us present the traditional concept of 
"uncertainties" (Landau and Lifschitz, 1980; Messiah, 1969) in a more general 
framework of quantum mechanics. We consider a quantum system (micropar- 
ticle) in a state described by the wave function 0. Its observables are described 
by the operators '~.i (J = 1, 2 . . . . .  n) regarded as generalized random variables. 
The mean (or expected) value of,~/is (,31i), ~ (0, ,4j0) with (~bi, 02) as scalar 
product of 01 and 02. Note that 0 and AJ refer to both orbital and spin 
characteristics of quantum systems. Then we can define the correlations 
C+(Aj, Ak), dispersions D,A i, and standard deviations A+A through the 
relations 

C+(A/, ak) = (8,Ai0, ~+A,O) 

D*Ai = C(A/, Ai) 

AoA j = (D,Aj) 1/2 (1) 

Traditionally (Landau and Lifschitz, 1980; Messiah, 1969) in the case of an 
orbital observable A/the quantity AoA i from (1) is regarded as "uncertainty." 
Such a view is connected with the fact that for A~ = A and A2 = B the 
quantities (1) satisfy the relation 

Aq, A -A~,B _> ] (8~,j,0, ~,/~0) (2) 

which in the case when A and B are canonically conjugated gives the famous 
Heisenberg uncertainty relation 

h 
A+A. A,B >-- ~ (3) 

Dumitru (1977, 1987, 1988, 1991, 1993) has proved that in fact the quantities 
A,A i are not "uncertainties," but simple fluctuation parameters (FP) and 
that such FP appear both in quantum and classical (nonquantum) physics. 
The mentioned proof provides (Dumitru, 1977, 1987, 1988, 1991, 1993)a 
natural and real support for avoiding the shortcomings which appear in the 
traditional conception founded on the idea of "quantum uncertainties." Now 
we wish to investigate the behavior patterns of the quantities AAj in the QCL. 

3. B E H A V I O R  PATTERNS IN Q C L  

For quantum observables all the FP defined in (1) are (Dumitru, 1993) 
directly dependent on the Planck constant h. So h plays the role of generic 
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indicator for quantum stochasticity. On the other hand, the condition h --> 0 
is associated (Landau and Lifschitz, 1980; Messiah, 1969) with the QCL. 
But the QCL is somehow more complex than the condition h --> 0. That is 
why we consider it to be of interest to investigate the behavior pattern of 
observables in the QCL. 

Let us refer first to the spin observables. We consider an electron whose 
spin characteristics are described by the spin wave function (spinor) ~.~ 
given by 

=rco ol [2] 
qJ'~ k sin ~ j '  oL ~ 0, (4) 

As specific observable we take the z component of the spin angular moment 
S z = (h/2)cr. (~: being the corresponding Pauli matrix). Then we find 

h . 
AS, = ~ sin 2or (5) 

We regard AS z as a FP which describes quantitatively the stochastic character- 
istics of the observable S.. Then from (5) one sees that the spin quantum 
stochasticity is in direct dependence of h, it being significant or not as h :~ 
0 or h --+ 0. This means that h plays the role of generic indicator of the 
mentioned kind of stochasticity. But for the state described by (4) one obtains 
also (S=) = (h/2)cos 2cc This additional result shows that in fact when h --+ 
0 the observable S.. disappears completely. On the other hand, for the discussed 
variable the condition h --+ 0 is identical with the QCL. Then we conclude 
that for spin observables the behavior pattern in QCL consists in an annulment 
of both stochastic characteristics and mean values (i.e., in a complete 
disappearance). 

Now let us discuss the cases of orbital quantum variables. In such cases 
the QCL implies not only the condition h + 0, but also the requirement that 
some quantum numbers grow unboundedly. The mentioned requirement is 
due to the fact that some significant observables connected with the orbital 
motion (e.g., the energy) pass from their quantum values to adequate classi- 
cal values. 

As a first example of orbital observables we quote the coordinate x of 
a harmonic oscillator with 

A,x h = n + (6) 

where m is the mass, to is the angular frequency, and n is the oscillation 
quantum number. In such a case the QCL means not only h --+ 0, but also 
n --+ % so that the quantum energy E,, = hm(n + 1/2) passes to the classical 
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energy E = ~ ~" 2~2 where xM is the coordinate amplitude. Then in the QCL ~-,,~w ~M, 
the quantity from (6) passes to the classical value: 

XM 
Actx = - ~  (7) 

But Aq, x and A<lx are FP which describe the stochastic characteristic of x in 
quantum, respectively classical, contexts. Then it results that in the QCL the 
behavior pattern of x consists in preservation of both its role of significant 
observable and its stochasticity. 

For another example of  orbital observable we consider the distance r 
between the electron and nucleus in a hydrogen atom. If the electron is in a 
state described by the orbital wave function tb,,t,, with l = n - 1 (where n, 
l, and m are, respectively, the principal, orbital, and magnetic quantum num- 
bers) for A, r  = Ar we can use the expression given in Schwabl (1992) 
rewritten in the form 

Ar = 2'rr~~ hZn(n + 1) 1/2 (8) 
moe 

with m0 the mass and e the charge of the electron. In the mentioned situation 
the energy of the electron is 

moe 4 
g, , -  2 "~ "~ 2 (9)  32~r ~ h ' n  

and in the QCL it must take its classical value Ect. Then in the QCL we 
must have h ~ 0 and n --~ ~ so that 

( --moe4 ~ '/2 
hn ~ ~ 3 2 ~ < i )  (10) 

(note that Ecl< 0 because the electron is in a bound state). Then it results 
that in the QCL we have 

__._)( he4 ) I/2 
Ar \ 16"rr~0J (-2m~ (11) 

In the same circumstances we have 

e 2 
r --~ r<t = 8"rr~oE<.~ (12) 

From (11) and (12) it results that in the QCL, when h --~ 0, one finds Ar -+ 
0 and r --~ rd 4: 0. This means that in the QCL the behavior pattern of r 
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consists in a preservation of role of significant observable accompanied with 
a loss of stochasticity. 

Now we end our considerations with the following concluding remark: in 
QCL the quantum observables have the following different behavior patterns: 

(i) The complete disappearance of both stochastic characteristics and 
of mean value, as in the case of spin observables. 

(ii) The preservation both of the role of significant variable and of 
stochastic characteristics, as in the case of oscillator coordinate x. 

(iii) The preservation of the role of significant variable, but the loss 
of stochastic characteristics, as in the case of electron distance r. 

These remarks rectify the traditional belief of a unique behavior pattern 
associated with the disappearance of "uncertainties" in QCL. 
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